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We show that the energy-transfer efficiency by nondegenerate two-beam coupling in a one-dimensional
Kerr-nonlinear superlattice can be enhanced by several orders of magnitude as compared with that in a
homogeneous medium of the same nonlinearity and length. This significant enhancement utilizes the strong
localized field at the band-edge state, two-frequency localized state, or defect state. Due to the intensity-
induced index modulation, the bistability is observed, and because of the energy transfer between different
wavelength components, the tristability behavior is induced.
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I. INTRODUCTION

Nonlinear photonic crystals have recently attracted con-
siderable attention �1�. The combination of both photonic
crystals and nonlinear optics has opened up an area of re-
search for both science and technology. In ��2� nonlinear
photonic crystals, most of the works have focused on the
enhancement of the second-harmonic or sum-frequency gen-
eration by use of the simultaneous availability of field local-
ization and phase-matching conditions at the band edge �2�.

For ��3� nonlinear photonic crystals, the works have fo-
cused mainly on the effects related to the refractive-index
change of the nonlinear layers caused by the light intensity
via Kerr effect. For example, by changing the light intensity
at frequency in the pass band, the band-edge frequency can
be dynamically tuned. Based on this mechanism, the optical
limiting and switching in one-dimensional �1D� nonlinear
photonic crystals have been studied �3�. By changing the
light intensity at the frequency near a band edge �4� or a
defect mode �5�, the frequency of the band-edge state or
defect mode shifts, leading to bistability phenomena. For fre-
quencies inside the gap, the formation of the ��3�-induced
self-organized localized state with a single-frequency com-
ponent, which is called single-frequency gap soliton �6–8�,
and that with multifrequency components, which is called
multi-frequency gap soliton �9�, have been demonstrated.

Recently, much attention has been paid to utilize the prop-
erties of field localization at defect states or gap-soliton
states to enhance the third-order nonlinear optical effects.
For example, the significant enhancement of the third-
harmonic generation by use of both field localization and
phase-matching conditions near the band edge or inside the
gap has been studied �10�. Furthermore, it has been shown
that the efficiency of the phase conjugation generation in
degenerate four-wave mixing could be enhanced greatly by
utilizing the strong field localization of a gap soliton or a
defect state �11�.

In this work we demonstrate that the great enhancement
of the energy-transfer efficiency in the ��3�-related nondegen-
erate two-beam coupling can also be realized by utilizing the
self-organized localized states and the shifted defect modes
induced by the incident waves. This presents a way toward
high-efficiency, microsized optical devices for optical signal
amplification and optical interconnection.

II. THEORY

Consider the two-beam coupling in a 1D Kerr-nonlinear
superlattice using the geometry shown in Fig. 1. In this ge-
ometry, the lossless nonlinear superlattice composes of N
unit cells. One layer in each unit cell is linear, with the re-
fractive index n01 and width l1. The other layer is nonlinear,
characterized by the usual, weak-field refractive index n02
and a Kerr coefficient n2. The width of the nonlinear layer is

l2. Two beams Ẽ1 and Ẽ2 are incident upon the superlattice

with incident angles �10 and �20, respectively. Beam Ẽ1 has

frequency �1 and beam Ẽ2 has frequency �2. Because of
reflections at each interface of two layers, in each layer, there

appear two additional beams, Ẽ−1 and Ẽ−2, which are the

mirror reflections of Ẽ1 and Ẽ2, respectively. Owing to the
nonlinear interaction in the nonlinear layers, energy can ex-

change between beams Ẽ1 and Ẽ−1 and between beams Ẽ2

and Ẽ−2. For simplicity, all waves are assumed to be E po-
larized with the electric field perpendicular to the plane of
incidence.

For plane waves, we represent the four beams in the lay-
ered medium by

FIG. 1. Geometry of nondegenerate two-beam coupling in a 1D
photonic crystal with Kerr nonlinearity. Beam E1 with frequency �1

and beam E2 with frequency �2 are two input beams. E−1 and E−2

are the mirror reflections of E1 and E2, respectively.
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Ẽ��r�,t� = E��r��e−i�1t + c.c. = A��z�eik��·r�−i�1t + c.c., �1a�

�� = 1,− 1� ,

Ẽ��r�,t� = E��r��e−i�2t + c.c. = A��z�eik��·r�−i�2t + c.c., �1b�

�� = 2,− 2� .

The total intensity distribution, I= �Ẽ1+ Ẽ2+ Ẽ−1+ Ẽ−2�2�t, is
hence given by

I = �A1�2 + �A2�2 + �A−1�2 + �A−2�2 + A1A−1
* ei�k�1−k�−1�·r�

+ A2A−2
* ei�k�2−k�−2�r� + A1A2

*ei�k�1−k�2�r�e−i�t + A1A−2
* ei�k�1−k�−2�r�e−i�t

+ A−1A2
*ei�k�−1−k�2�r�e−i�t + A−1A−2

* ei�k�−1−k�−2�r�e−i�t + c.c. �2�

where the angular bracket represents an average over a time
interval of many optical periods and �=�1−�2 is the fre-
quency detuning. In a Kerr medium, the nonlinear part of the
refractive index obeys a Debye relaxation equation of the
form �12�

�
dnNL

dt
+ nNL = n2I , �3�

where � is the response time of the Kerr effect. Substituting
Eq. �2� into Eq. �3� and then solving Eq. �3� we finally obtain

nNL = n2��A1�2 + �A2�2 + �A−1�2 + �A−2�2 + A1A−1
* ei�k�1−k�−1�r�

+ A2A−2
* ei�k�2−k�−2�r� +

A1A2
*ei�k�1−k�2�r�e−i�t

1 − i��

+
A1A−2

* ei�k�1−k�−2�r�e−i�t

1 − i��
+

A−1A2
*ei�k�−1−k�2�r�e−i�t

1 − i��

+
A−1A−2

* ei�k�−1−k�−2�r�e−i�t

1 − i��
+ c.c.	 . �4�

Substituting Eqs. �1a� and �1b� and n2=n02
2 +2n02nNL into

�2Ẽ −
n2

c2

�2Ẽ

�t2 = 0

and making the slowly varying-amplitude approximation, we
obtain

dA�

dz
= i��A�, �� = 1,2� , �5a�

dA�

dz
= − i��A�, �� = − 1,− 2� , �5b�

where

�1 =
n2�1

c cos�1
��A1�2 + �A2�2 + 2�A−1�2 + �A−2�2�

+
n2�2

c cos�1

�A2�2 + �A−2�2

1 − i��
, �6a�

�2 =
n2�2

c cos�2
��A1�2 + �A2�2 + �A−1�2 + 2�A−2�2�

+
n2�1

c cos�2

�A1�2 + �A−1�2

1 + i��
, �6b�

�−1 =
n2�1

c cos�1
�2�A1�2 + �A2�2 + �A−1�2 + �A−2�2�

+
n2�2

c cos�1

�A2�2 + �A−2�2

1 − i��
, �6c�

�−2 =
n2�2

c cos�2
��A1�2 + 2�A2�2 + �A−1�2 + �A−2�2�

+
n2�1

c cos�2

�A1�2 + �A−1�2

1 + i��
. �6d�

Here, �1 and �2 are propagation angles of Ẽ1 and Ẽ2 inside
the nonlinear medium. It should be mentioned that the imagi-
nary parts of �� in Eqs. �6a�–�6d� represent energy exchange
between frequency components, which is peaked when ����
=1. In the case of a homogeneous medium, where Ẽ−1

= Ẽ−2=0, it is easy to show that the total energy current den-
sity of the two components along the z direction is a con-
stant, independent of the exchange.

In order to solve Eqs. �5a�, �5b�, and �6a�–�6d�, we divide
each nonlinear layer into M sublayers and assume the values
of �� ��=1,2 ,−1 ,−2� in each sublayer to be constants and
equal to their mean values in the sublayer. In our calcula-
tions, M is taken so that a convergent result is reached. After
solving Eqs. �5a� and �5b� in each sublayer, we obtain

A��ls,i� = ei��ls,iA��0�, �� = 1,2� , �7a�

A��ls,i� = e−i��ls,iA��0�, �� = − 1,− 2� , �7b�

where A�0 denotes the field amplitude at one boundary and
A��ls,i� at the other boundary of the sublayer i of width ls,i in
the s layer.

From Eqs. �1a�, �1b�, �7a�, and �7b�, we have the follow-
ing relation:

E��ls,i� = ei��E��0�, �� = 1,2� , �8a�

E��ls,i� = e−i��E��0�, �� = − 1,− 2� , �8b�

where E��0� denotes the field at one boundary and E��ls,i� at
the other boundary of the sublayer i of width ls,i in the s
layer, �	= ls,i�n0

�s,i�k	cos �1
�s,i�+�	�, �	=1,−1�, and �	

= ls,i�n0
�s,i�k	cos �2

�s,i�+�	�, �	=2,−2�. Here, n0
�s,i� denotes the

weak-field refractive index of the sublayer, �1
�s,i� and �2

�s,i� are

propagation angles of Ẽ1 and Ẽ2, respectively, in the sub-
layer. From the continuity of both E and H �i.e., the deriva-
tive of E� at the interface of two sublayers, we have the
following relation:
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� E1�0�
E−1�0� 	�s,i�

=
1

2
�1 + S1 1 − S1

1 − S1 1 + S1
	� E1�ls,i−1�

E−1�ls,i−1� 	�s,i−1�

,

�9a�

� E2�0�
E−2�0� 	�s,i�

=
1

2
�1 + S2 1 − S2

1 − S2 1 + S2
	� E2�ls,i−1�

E−2�ls,i−1� 	�s,i−1�

,

�9b�

where S1= �n0
�s,i−1�cos �1

�s,i−1�� / �n0
�s,i�cos �1

�s,i�� and S2

= �n0
�s,i−1�cos �2

�s,i−1�� / �n0
�s,i�cos �2

�s,i��. Combining Eqs. �8a�,
�8b�, �9a�, and �9b� we get

� E1�ls,i�
E−1�ls,i�

	�s,i�

= t1
�s,i�� E1�ls,i−1�

E−1�ls,i−1� 	�s,i−1�

, �10a�

t1
�s,i� =

1

2
� �1 + S1�ei�� �1 − S1�ei��

�1 − S1�e−i�	 �1 + S1�e−i�	
	 , �10b�

and

� E2�ls,i�
E−2�ls,i�

	�s,i�

= t2
�s,i�� E2�ls,i−1�

E−2�ls,i−1� 	�s,i−1�

, �10c�

t2
�s,i� =

1

2
� �1 + S2�ei�� �1 − S2�ei��

�1 − S2�e−i�	 �1 + S2�e−i�	
	 . �10d�

For the linear layer, we take n2=0 and M =1. From the prod-
ucts of these matrices, T1=
i=1

N�M+1�t1
�s,i� and T2=
i=1

N�M+1�t2
�s,i�,

we obtain the transmission coefficients for E1 and E2 as

E1�L�
E1�0�

=
T1�1,1�T1�2,2� − T1�1,2�T1�2,1�

T1�2,2�
, �11a�

E2�L�
E2�0�

=
T2�1,1�T2�2,2� − T2�1,2�T2�2,1�

T2�2,2�
, �11b�

and the reflection coefficients as

E−1�0�
E1�0�

= −
T1�2,1�
T1�2,2�

, �11c�

E−2�0�
E2�0�

= −
T2�2,1�
T2�2,2�

. �11d�

III. NUMERICAL CALCULATION AND DISCUSSION

The equations in Sec. II are solved numerically by using
an iterative procedure described in Refs. �8,9�. We emphasize
that all the solutions presented below are stable. In fact, if a
solution is not stable in time, i.e., the solution is not a fixed
attractor, the iterative procedure will never be convergent to
a limiting result. For calculations, we consider a CdS/SiO2
superlattice of N unit cells, i.e., N nonlinear layers and N
linear layers. SiO2 can be considered to be linear, with re-
fractive index n01=1.45 in the wavelength of 
�680 nm.
For the nonlinear CdS layers, n02=2.4, ��3�=−10−10 esu, or

equivalently, n2�6���3� /n02=−7.85�10−10 esu, and �
=250 fs �13�.

Throughout this work we take the incident angles for the
two input beams as �10=2° and �20=7°.

A. Enhancement of energy transfer by making use of gap
localized state

We first study the enhancement of energy-transfer effi-
ciency by making use of the field localization at band-edge
state or self-organized localized state inside the gap. To do
so, we consider a superlattice of N=30 unit cells, i.e., 30
SiO2-linear layers and 30 CdS-nonlinear layers, with the
width of each layer as l1= l2=75 nm. In the linear case, i.e.,
n2=0, the transmission spectrum of a beam propagating
through the superlattice with incident angles �10=2° and
�20=7° gives the higher-wavelength band edges of the first
band gap at 
10=682.27 nm and 
20=681.36 nm, respec-
tively. Since the Kerr nonlinearity �n2
0� induces the shift
of the band edge or the formation of gap soliton �6–9�, in
order to make use of their localized fields we should choose
the operating wavelengths 
1 and 
2 of the two input beams
slightly smaller than 
10 and 
20, respectively. In Figs. 2�a�
and 2�b� we show three typical results of the transmission
I2�L� / I2�0� and reflection I−2�0� / I2�0�, respectively, as a
function of input pump intensity I1�0�, with fixed I2�0�
=3.675 MW/cm2. Here we denote Ij = �Ej�2 �j=1,2 ,−1 ,−2�.
Dashed curves are for 
1=681.83 nm and 
2=680.85 nm,
dotted curves for 
1=681.45 nm and 
2=680.47 nm, and
solid curves for 
1=681.3 nm and 
2=680.32 nm. Note that
the wavelengths used in Fig. 2 give ����= �2�c� / �1/
1

−1/
2��=0.99, which is nearly unity.

FIG. 2. I2�L� / I2�0� �a� and I−2�0� / I2�0� �b� as a function of I1�0�
in the superlattice of N=30 unit cells. Dashed curves: 
1

=681.83 nm, 
2=680.85 nm. Dotted curves: 
1=681.45 nm, 
2

=680.47 nm. Solid curves: 
1=681.3 nm, 
2=680.32 nm.
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When the operating wavelengths 
1 and 
2 are very near
their band-edge wavelengths 
10 and 
20, I2�L� / I2�0� �or
I−2�0� / I2�0�� versus I1�0� has a single value, as shown by
dashed curves. The maximum value of I2�L� / I2�0� corre-
sponds to the situation that the interacting beams are ap-
proximately operating at their shifted band-edge states. To
compare with the result in a homogeneous medium we give
a calculation of the gain in a medium of the same n2 and
length L=30l1+30l2=4.5 �m. Now there exist only two in-

teracting beams Ẽ1 and Ẽ2 inside the medium when neglect-
ing the reflections at the input and output faces. From Eqs.
�5a�, �6a�, and �6b� we can easily obtain dI2 /dz
= �n2�1� / �c cos�2� /2�� / �1+�2�2�I1I2. In the approximation
of undepleted pump we have I2�L�
 I2�0�exp�gL�, where the
gain coefficient g=n2�1 / �c cos�2� /2�� / �1+�2�2�I1�0�. Thus
the increase of I2 is �I2�L�− I2�0�� / I2�0��5.8�10−3 for
I1�0��187.6 MW/cm2 and 
1=2�c /�1=681 nm. From
Fig. 2 we note that the efficiency of energy transfer is en-
hanced by nearly three orders of magnitude.

From Fig. 2, we see that as the operating wavelengths 
1
and 
2 are moved into their band gaps the bistability of
I2�L� / I2�0� versus I1�0� occurs, as shown by dotted curves.
This is similar to the transmission behavior of a single beam
through the nonlinear superlattice, where the bistability is
associated with the formation of a gap soliton �6–8�. The
large value of I2�L� / I2�0� in the dotted curves of Fig. 2 is due
to the excitation of the self-organized field localizations for
both 
1- and 
2-wavelength components. This can be seen
from the intensity distributions for both wavelength compo-
nents at point A, as shown in Fig. 3. The localized fields for
two wavelengths are induced by a common refractive-index
modulation of the nonlinear layers.

From Fig. 2, it is interesting to note that, as the operating
wavelengths 
1 and 
2 are further moved into their gaps,
tristability of I2�L� / I2�0� versus I1�0� occurs, as shown by
solid curves. We verified that both the coupled localized
fields for two wavelength components at point B and those at
point C have single-envelope distributions, which are shown
in Figs. 4�a� and 4�b�, respectively. Figures 4�a� and 4�b�
represent the two different stable states with different local-
ized intensities for two wavelengths. The existence of two
localized states in this case is a result of nonlinear energy
exchange between the wavelength components. This is dif-

ferent from the multistability found in the case of single
incident beam, where different solutions correspond to soli-
ton trains with different numbers of envelopes �8�.

The multistabilities studied above were observed via the
change of input intensity at a fixed set of operating wave-
lengths. Similarly, we can observe the multistability via the
change of operating wavelengths at a fixed set of input in-
tensities and frequency detuning �=�1−�2=2�c�1/
1

−1/
2�. In Fig. 5 we show two typical results of I2�L� / I2�0�
versus 
1 for I2�0�=3.675 MW/cm2 with I1�0�
=397 MW/cm2 and I1�0�=415 MW/cm2, where bistability
and tristability are clearly seen.

The tristability phenomenon disappears when ��1/� or
��1/� as the imaginary parts of ��’s in Eqs. �6a�–�6d� be-
come small and energy transfer can be ignored. In these lim-
its, we only find bistability curves for each wavelength com-
ponent, with one single-envelope solution. To see how large
the deviation of ���� from unit induces the disappearance of
the tristability phenomenon, we make calculations with the

FIG. 3. Intensity distributions for components of wavelength

1=681.45 nm �dotted curve� and wavelength 
2=680.47 nm �solid
curve� at point A of Fig. 2. The intensity is normalized by I1�0�.

FIG. 4. Intensity distributions for components of wavelength

1=681.3 nm �dotted curve� and wavelength 
2=680.32 nm �solid
curve� at point B �a� and at point C �b� of Fig. 2. The intensity is
normalized by I1�0�.

FIG. 5. I2�L� / I2�0� as a function of �1 in the superlattice of N
=30 unit cells. I2�0�=3.675 MW/cm2 and 
1−
2=0.98 nm which
gives ����=0.99. Dotted curve: I1�0�=397 MW/cm2; solid curve:
I1�0�=415 MW/cm2.

PING XIE AND ZHAO-QING ZHANG PHYSICAL REVIEW E 72, 036607 �2005�

036607-4



same value of �, i.e., 
1=681.3 nm and 
2=680.32 nm, but
varying �. Similar to Fig. 2, in Fig. 6�a� we show I2�L� / I2�0�
versus I1�0�, with fixed I2�0�=3.675 MW/cm2 for various
value of ����
1. It is seen that, as ���� deviates from unit,
the width of the tristability region becomes narrower and, as
we have verified, when ����
0.46 the tristability disappears.
For �����1, we show some typical results in Fig. 6�b�. Simi-
lar to the case of ����
1, the width of the tristability region
becomes narrower as ���� increases from unit. When ����
�1.45, the tristability disappears. It is worth mentioning
here that the limit of ��1/� corresponds to the case studied
in Ref. �3�, where the strong pump beam I1 tunes the fre-
quency of the band-gap edge and the weak probe beam I2
feels this frequency change.

B. Enhancement of energy transfer by making use
of defect state

The above results show that the energy-transfer efficiency
can be significantly enhanced through the formation of self-

organized localized states near the band edge. Using the
same principle, it is expected that large enhancement can
also be achieved by use of the field localization in a defect
state. To show this, we consider a superlattice of 21 layers,
i.e., 11 CdS-nonlinear layers and 10 SiO2-linear layers, with
the width of each layer as l1= l2=83 nm except the width of
the middle CdS-nonlinear layer as 2l2=166 nm. The trans-
mission spectrum of the linear superlattice gives the defect
modes occurring at 
1d=675.183 nm and 
2d=674.112 nm
for the beam incident upon the sample at incident angles
�10=2° and �20=7°, respectively. Considering that the Kerr
nonlinearity induces the shifts of the defect modes, we
choose the operating wavelengths 
1 and 
2 slightly smaller
than 
1d and 
2d, respectively. We find that the output inten-
sities exhibit the similar behaviors as those shown in Fig. 2,
i.e., as 
1 and 
2 are moved away from 
1d and 
2d the
output intensity versus input intensity changes from the
single value to bistablity and then to tristability. For example,
in Figs. 7�a� and 7�b� we show three typical results for
I2�L� / I2�0� and I−2�0� / I2�0� versus I1�0�, respectively, where
we fix I2�0�=3.675 MW/cm2. Dashed curves are for 
1

=673.95 nm and 
2=672.97 nm, dotted curves for 
1
=672.95 nm and 
2=671.97 nm, and solid curves for 
1
=672.75 nm and 
2=671.77 nm. The wavelengths used in
Fig. 7 give ����=0.99. From the calculated value of �I2�L�
− I2�0�� / I2�0��2.1�10−3 for I1�0�=181 MW/cm2 in a ho-
mogeneous medium of the same n2 and L=1.743 �m, we see
from Fig. 4 that the energy-transfer efficiency is enhanced by
more than three orders of magnitude.

IV. CONCLUSION

In conclusion, we show that the energy-transfer efficiency
by nondegenerate two-beam coupling in a 1D Kerr-nonlinear

FIG. 6. �a� I2�L� / I2�0� as a function of I1�0� for �=228 fs
������0.9�, �=152 fs ������0.6�, �=126 fs ������0.5�, and �
=96 fs ������0.38� in the superlattice of N=30 unit cells, with
fixed 
1=681.3 nm and 
2=680.32 nm. �b� I2�L� / I2�0� as a func-
tion of I1�0� for �=303 fs ������1.2�, �=354 fs ������1.4�, and
�=379 fs ������1.5�.

FIG. 7. I2�L� / I2�0� �a� and I−2�0� / I2�0� �b� as a function of I1�0�
in the superlattice of N=11 unit cells with a defect. Dashed curves:

1=673.95 nm, 
2=672.97 nm. Dotted curves: 
1=672.95 nm, 
2

=671.97 nm. Solid curves: 
1=672.75 nm, 
2=671.77 nm.

NONDEGENERATE TWO-BEAM COUPLING IN KERR … PHYSICAL REVIEW E 72, 036607 �2005�

036607-5



superlattice can be enhanced by several orders of magnitude.
Such an effective enhancement is due to the excitation of the
coupled localized state with two wavelength components.
The efficiency can also be enhanced significantly by utilizing
the shifted coupled defect modes. Due to the intensity-
induced index modulation �4�, the bistability is observed, and
because of the energy transfer between different wavelength
components a state can occur, which results in a tristability
behavior. Finally, since the sample thicknesses used in this

work are 4.5 and 1.743 �m, our work presents a way toward
high-efficiency and microsized optical devices for optical
signal amplification and optical interconnection.
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